Webinar: IH Statistics: Rule Based Data Interpretation

In view of the known variability of industrial hygiene data sets, a small dataset is unlikely to generate data which reflects the full range of potential exposures. Rule-based data interpretation approaches including the EN 689 standard can be applied for small or highly truncated data sets where most of the values are below the limit of quantitation. Rule-based statistics are easy to use, are “black and white”, and often allow better decision making than calculating traditional statistics or Bayesian statistics for these small or highly truncated data sets. However, as discussed in this presentation, the choice of which rule-based data interpretation approach to apply can depend on many factors, including not only the number of data points collected but also a risk assessment for your specific operation(s).

Who Should Attend

Environmental, health, and safety (EHS) professionals, industrial hygienists, engineers, or others with responsibility to interpret employee exposure and air monitoring data.

About the Instructor

Dr. Brent Altemose, Ph.D., CIH, CSP is a Principal Industrial Hygienist with Trinity Consultants. Since beginning his career as a ventilation engineer, he has worked for over 20 years in the fields of industrial hygiene and occupational safety. Dr. Altemose has particular expertise in exposure control, exposure assessment strategies and modeling, analysis of industrial hygiene data, local exhaust and laboratory ventilation, and indoor air quality.

Note: The course fee is per attendee. Recording the training course is strictly prohibited.

For registration questions please contact Kent Rader at Kent.Rader@safebridge.com


No sessions are scheduled right now.

Notify me when new sessions are scheduled